430 Stars
Updated Last
7 Months Ago
Started In
January 2015


Build Status Documentation Status

PkgEval codecov

Star on GitHub

A control systems design toolbox for Julia.


To install, in the Julia REPL:

using Pkg; Pkg.add("ControlSystems")


All functions have docstrings, which can be viewed from the REPL, using for example ?tf .

A documentation website is available at http://juliacontrol.github.io/ControlSystems.jl/dev/ and an introductory video series is available here.

Some of the available commands are:

Constructing systems

ss, tf, zpk, delay


poles, tzeros, norm, hinfnorm, linfnorm, ctrb, obsv, gangoffour, margin, markovparam, damp, dampreport, zpkdata, dcgain, covar, gram, sigma, sisomargin


are, lyap, lqr, place, leadlink, laglink, leadlinkat, rstd, rstc, dab, balreal, baltrunc

PID design

pid, stabregionPID, loopshapingPI, pidplots, placePI

Time and Frequency response

step, impulse, lsim, freqresp, evalfr, bode, nyquist


bodeplot, nyquistplot, sigmaplot, plot(lsim(...)), plot(step(...)), plot(impulse(...)), marginplot, gangoffourplot, pzmap, nicholsplot, pidplots, rlocus, leadlinkcurve


minreal, sminreal, c2d


This toolbox works similar to that of other major computer-aided control systems design (CACSD) toolboxes. Systems can be created in either a transfer function or a state space representation. These systems can then be combined into larger architectures, simulated in both time and frequency domain, and analyzed for stability/performance properties.


Here we create a simple position controller for an electric motor with an inertial load.

using ControlSystems

# Motor parameters
J = 2.0
b = 0.04
K = 1.0
R = 0.08
L = 1e-4

# Create the model transfer function
s = tf("s")
P = K/(s*((J*s + b)*(L*s + R) + K^2))
# This generates the system
# TransferFunction:
#                1.0
# ---------------------------------
# 0.0002s^3 + 0.160004s^2 + 1.0032s
#Continuous-time transfer function model

# Create an array of closed loop systems for different values of Kp
CLs = TransferFunction[kp*P/(1 + kp*P) for kp = [1, 5, 15]];

# Plot the step response of the controllers
# Any keyword arguments supported in Plots.jl can be supplied
using Plots
plot(step.(CLs, 5), label=["Kp = 1" "Kp = 5" "Kp = 15"])


Additional examples

See the examples folder and ControlExamples.jl and several examples in the documentation.