BlockDiagonals.jl

Functionality for working efficiently with block diagonal matrices.
Popularity
44 Stars
Updated Last
10 Months Ago
Started In
July 2018

BlockDiagonals.jl

Stable Dev CI Codecov code style blue

Functionality for working efficiently with block diagonal matrices. Note that non-square blocks are allowed, similarly to scipy.block_diag, but in contrast to the mathematical definition above.

Construct a BlockDiagonal matrix by passing in only the non-zero blocks on the diagonal, and use it as a regular matrix

julia> using BlockDiagonals

julia> bm = BlockDiagonal([rand(2, 3), ones(3, 2)])
5×5 BlockDiagonal{Float64, Matrix{Float64}}:
 0.289276  0.994487  0.287658  0.0  0.0
 0.659821  0.334724  0.780973  0.0  0.0
 0.0       0.0       0.0       1.0  1.0
 0.0       0.0       0.0       1.0  1.0
 0.0       0.0       0.0       1.0  1.0

julia> v = ones(5);

julia> bm * v
5-element Vector{Float64}:
 1.5714204086879524
 1.7755185907265039
 2.0
 2.0
 2.0

julia> svd(bm)
SVD{Float64, Float64, Matrix{Float64}}
U factor:
5×4 Matrix{Float64}:
  0.0      -0.70666   -0.707553   0.0
  0.0      -0.707553   0.70666    0.0
 -0.57735   0.0        0.0       -0.57735
 -0.57735   0.0        0.0        0.788675
 -0.57735   0.0        0.0       -0.211325
singular values:
4-element Vector{Float64}:
 2.4494897427831783
 1.3801377610748038
 0.6387290946600256
 0.0
Vt factor:
4×5 Matrix{Float64}:
  0.0        0.0        0.0       -0.707107  -0.707107
 -0.486385  -0.680801  -0.547667   0.0        0.0
  0.409549  -0.731322   0.545379   0.0        0.0
  0.0        0.0        0.0       -0.707107   0.707107

Additional functionality includes

julia> nblocks(bm)
2

julia> blocks(bm)
2-element Vector{Matrix{Float64}}:
 [0.2892758623451861 0.9944869494674535 0.2876575968753128; 0.6598212430288488 0.33472423873340906 0.780973108964246]
 [1.0 1.0; 1.0 1.0; 1.0 1.0]

julia> blocksizes(bm)
2-element Vector{Tuple{Int64, Int64}}:
 (2, 3)
 (3, 2)

julia> blocksize(bm, 1)
(2, 3)