TiderDB.jl is a 100% Julia implementation of the dbplyr R package, and similar to Python's ibis package.
The main goal of TidierDB.jl is to bring the syntax of Tidier.jl to multiple SQL backends, making it possible to analyze data directly on databases without needing to copy the entire database into memory.
| DuckDB (default) | duckdb() | ClickHouse | clickhouse() | 
| SQLite | sqlite() | Postgres | postgres() | 
| MySQL | mysql() | MariaDB | mysql() | 
| MSSQL | mssql() | Athena | athena() | 
| Snowflake | snowflake() | Databricks | databricks() | 
| Google Big Query | gbq() | Oracle | oracle() | 
Change the backend using set_sql_mode() - for example  - set_sql_mode(databricks())
For the stable version:
] add TidierDB
TidierDB.jl currently supports the following top-level macros:
| Category | Supported Macros and Functions | 
|---|---|
| Data Manipulation | @arrange,@group_by,@filter,@select,@mutate(supportsacross),@summarize/@summarise(supportsacross),@distinct | 
| Joining | @left_join,@right_join,@inner_join,@anti_join,@full_join,@semi_join(slight syntax differences from TidierData.jl) | 
| Slice and Order | @slice_min,@slice_max,@slice_sample,@order,@window_order,@window_frame | 
| Utility | @show_query,@collect,@head,@count,show_tables | 
| Helper Functions | across,desc,if_else,case_when,n,starts_with,ends_with,contains,as_float,as_integer,as_string,is_missing,missing_if,replace_missing | 
| TidierStrings.jl Functions | str_detect,str_replace,str_replace_all,str_remove_all,str_remove | 
| TidierDates.jl Functions | year,month,day,hour,min,second,floor_date,difftime | 
| Aggregate Functions | mean,minimum,maximum,std,sum,cumsum,cor,cov,var, | 
@summarize supports any SQL aggregate function in addition to the list above. Simply write the function as written in SQL syntax and it will work.                                                                                                    |
When using the DuckDB backend, if db_table recieves a file path (.parquet, .json, .csv, iceberg or delta), it does not copy it into memory. This allows for queries on files too big for memory. db_table also supports S3 bucket locations via DuckDB.
Typically, you will want to use TidierDB alongside TidierData because there are certain functionality (such as pivoting) which are only supported in TidierData and can only be performed on data frames.
Our recommended path for using TidierDB is to import the package so that there are no namespace conflicts with TidierData. Once TidierDB is integrated with Tidier, then Tidier will automatically load the packages in this fashion.
First, let's develop and execute a query using TidierDB. Notice that all top-level macros and functions originating from TidierDB start with a DB prefix. Any functions defined within macros do not need to be prefixed within DB because they are actually pseudofunctions that are in actuality converted into SQL code.
Even though the code reads similarly to TidierData, note that no computational work actually occurs until you run DB.@collect(), which runs the SQL query and instantiates the result as a DataFrame.
using TidierData
import TidierDB as DB
db = DB.connect(DB.duckdb());
path_or_name = "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
@chain DB.db_table(db, path_or_name) begin
    DB.@filter(!starts_with(model, "M"))
    DB.@group_by(cyl)
    DB.@summarize(mpg = mean(mpg))
    DB.@mutate(mpg_squared = mpg^2, 
               mpg_rounded = round(mpg), 
               mpg_efficiency = case_when(
                                 mpg >= cyl^2 , "efficient",
                                 mpg < 15.2 , "inefficient",
                                 "moderate"))            
    DB.@filter(mpg_efficiency in ("moderate", "efficient"))
    DB.@arrange(desc(mpg_rounded))
    DB.@collect
end2×5 DataFrame
 Row │ cyl     mpg       mpg_squared  mpg_rounded  mpg_efficiency 
     │ Int64?  Float64?  Float64?     Float64?     String?        
─────┼────────────────────────────────────────────────────────────
   1 │      4   27.3444      747.719         27.0  efficient
   2 │      6   19.7333      389.404         20.0  moderate
We cannot do this using TidierDB. However, we can call @pivot_longer() from TidierData after the result of the query has been instantiated as a DataFrame, like this:
@chain DB.db_table(db, path_or_name) begin
    DB.@filter(!starts_with(model, "M"))
    DB.@group_by(cyl)
    DB.@summarize(mpg = mean(mpg))
    DB.@mutate(mpg_squared = mpg^2, 
               mpg_rounded = round(mpg), 
               mpg_efficiency = case_when(
                                 mpg >= cyl^2 , "efficient",
                                 mpg < 15.2 , "inefficient",
                                 "moderate"))            
    DB.@filter(mpg_efficiency in ("moderate", "efficient"))
    DB.@arrange(desc(mpg_rounded))
    DB.@collect
    @pivot_longer(everything(), names_to = "variable", values_to = "value")
end10×2 DataFrame
 Row │ variable        value     
     │ String          Any       
─────┼───────────────────────────
   1 │ cyl             4
   2 │ cyl             6
   3 │ mpg             27.3444
   4 │ mpg             19.7333
   5 │ mpg_squared     747.719
   6 │ mpg_squared     389.404
   7 │ mpg_rounded     27.0
   8 │ mpg_rounded     20.0
   9 │ mpg_efficiency  efficient
  10 │ mpg_efficiency  moderate
We can replace DB.collect() with DB.@show_query to reveal the underlying SQL query being generated by TidierDB. To handle complex queries, TidierDB makes heavy use of Common Table Expressions (CTE), which are a useful tool to organize long queries.
@chain DB.db_table(db, path_or_name) begin
    DB.@filter(!starts_with(model, "M"))
    DB.@group_by(cyl)
    DB.@summarize(mpg = mean(mpg))
    DB.@mutate(mpg_squared = mpg^2, 
               mpg_rounded = round(mpg), 
               mpg_efficiency = case_when(
                                 mpg >= cyl^2 , "efficient",
                                 mpg < 15.2 , "inefficient",
                                 "moderate"))            
    DB.@filter(mpg_efficiency in ("moderate", "efficient"))
    DB.@arrange(desc(mpg_rounded))
    DB.@show_query
endWITH cte_1 AS (
SELECT *
        FROM mtcars
        WHERE NOT (starts_with(model, 'M'))),
cte_2 AS (
SELECT cyl, AVG(mpg) AS mpg
        FROM cte_1
        GROUP BY cyl),
cte_3 AS (
SELECT  cyl, mpg, POWER(mpg, 2) AS mpg_squared, ROUND(mpg) AS mpg_rounded, CASE WHEN mpg >= POWER(cyl, 2) THEN 'efficient' WHEN mpg < 15.2 THEN 'inefficient' ELSE 'moderate' END AS mpg_efficiency
        FROM cte_2 ),
cte_4 AS (
SELECT *
        FROM cte_3
        WHERE mpg_efficiency in ('moderate', 'efficient'))  
SELECT *
        FROM cte_4  
        ORDER BY mpg_rounded DESC
TidierDB is already quite fully-featured, supporting advanced TidierData functions like across() for multi-column selection.
@chain DB.db_table(db, path_or_name) begin
    DB.@group_by(cyl)
    DB.@summarize(across((starts_with("a"), ends_with("s")), (mean, sum)))
    DB.@collect
end3×5 DataFrame
 Row │ cyl     mean_am   mean_vs   sum_am   sum_vs  
     │ Int64?  Float64?  Float64?  Int128?  Int128? 
─────┼──────────────────────────────────────────────
   1 │      4  0.727273  0.909091        8       10
   2 │      6  0.428571  0.571429        3        4
   3 │      8  0.142857  0.0             2        0
Bang bang !! interpolation for columns and values is also supported.
There are a few subtle but important differences from Tidier.jl outlined here.
You can use any existing SQL function within @mutate with the correct SQL syntax and it should just work.
But if you run into problems please open an issue, and we will be happy to take a look!
