Proximal operators for nonsmooth optimization in Julia
122 Stars
Updated Last
12 Months Ago
Started In
August 2016


Build status codecov DOI

Proximal operators for nonsmooth optimization in Julia. This package can be used to easily implement proximal algorithms for convex and nonconvex optimization problems such as ADMM, the alternating direction method of multipliers.

See ProximalAlgorithms.jl for generic implementations of algorithms based on the primitives here defined.

See the documentation on how to use the package.


To install the package, hit ] from the Julia command line to enter the package manager, then

pkg> add ProximalOperators


With using ProximalOperators the package exports the prox and prox! methods to evaluate the proximal mapping of several functions.

A list of available function constructors is in the documentation.

For example, you can create the L1-norm as follows.

julia> f = NormL1(3.5)
description : weighted L1 norm
type        : Array{Complex} → Real
expression  : x ↦ λ||x||_1
parameters  : λ = 3.5

Functions created this way are, of course, callable.

julia> x = randn(10) # some random point
julia> f(x)

prox evaluates the proximal operator associated with a function, given a point and (optionally) a positive stepsize parameter, returning the proximal point y and the value of the function at y:

julia> y, fy = prox(f, x, 0.5) # last argument is 1.0 if absent

prox! evaluates the proximal operator in place, and only returns the function value at the proximal point:

julia> fy = prox!(y, f, x, 0.5) # in-place equivalent to y, fy = prox(f, x, 0.5)

Related packages


  1. N. Parikh and S. Boyd (2014), Proximal Algorithms, Foundations and Trends in Optimization, vol. 1, no. 3, pp. 127-239.

  2. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein (2011), Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122.


ProximalOperators.jl is developed by Lorenzo Stella and Niccolò Antonello at KU Leuven, ESAT/Stadius, and Mattias Fält at Lunds Universitet, Department of Automatic Control.