ParameterizedFunctions.jl

A simple domain-specific language (DSL) for defining differential equations for use in scientific machine learning (SciML) and other applications
Popularity
77 Stars
Updated Last
10 Months Ago
Started In
September 2016

ParameterizedFunctions.jl

Join the chat at https://julialang.zulipchat.com #sciml-bridged Global Docs

codecov Build Status

ColPrac: Contributor's Guide on Collaborative Practices for Community Packages SciML Code Style

ParameterizedFunctions.jl is a component of the SciML ecosystem which allows for easily defining parameterized ODE models in a simple syntax.

Tutorials and Documentation

For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation, which contains the unreleased features.

Example

The following are valid ODE definitions.

using DifferentialEquations, ParameterizedFunctions

# Non-Stiff ODE

lotka_volterra = @ode_def begin
    d๐Ÿ = ฮฑ * ๐Ÿ - ฮฒ * ๐Ÿ * ๐Ÿˆ
    d๐Ÿˆ = -ฮณ * ๐Ÿˆ + ฮด * ๐Ÿ * ๐Ÿˆ
end ฮฑ ฮฒ ฮณ ฮด

p = [1.5, 1.0, 3.0, 1.0];
u0 = [1.0; 1.0];
prob = ODEProblem(lotka_volterra, u0, (0.0, 10.0), p)
sol = solve(prob, Tsit5(), reltol = 1e-6, abstol = 1e-6)

# Stiff ODE

rober = @ode_def begin
    dyโ‚ = -kโ‚ * yโ‚ + kโ‚ƒ * yโ‚‚ * yโ‚ƒ
    dyโ‚‚ = kโ‚ * yโ‚ - kโ‚‚ * yโ‚‚^2 - kโ‚ƒ * yโ‚‚ * yโ‚ƒ
    dyโ‚ƒ = kโ‚‚ * yโ‚‚^2
end kโ‚ kโ‚‚ kโ‚ƒ

prob = ODEProblem(rober, [1.0, 0.0, 0.0], (0.0, 1e5), [0.04, 3e7, 1e4])
sol = solve(prob)