This package should be used as a backend by package developers.
It allows developers to add a ::CovarianceEstimator
argument in the fit
method defined by their package. See FixedEffectModels
for an example.
Each type defined in this package defines the following methods:
# return a vector indicating non-missing observations for standard errors
completecases(table, ::CovarianceEstimator) = trues(size(df, 1))
# materialize a CovarianceEstimator by using the data needed to compute the standard errors
materialize(table, v::CovarianceEstimator) = v
# return variance-covariance matrix
vcov(x::RegressionModel, ::CovarianceEstimator) = error("vcov not defined for this type")
# returns the degree of freedom for the t-statistics and F-statistic
dof_tstat(x::RegressionModel, ::CovarianceEstimator, hasintercept::Bool) = dof_residual(x) - hasintercept
For now, it includes Vcov.simple()
, Vcov.robust()
, and Vcov.cluster(...)
.
References
Kleibergen, F, and Paap, R. (2006) Generalized reduced rank tests using the singular value decomposition. Journal of econometrics
Kleibergen, F. and Schaffer, M. (2007) RANKTEST: Stata module to test the rank of a matrix using the Kleibergen-Paap rk statistic. Statistical Software Components, Boston College Department of Economics.