SparseADRules.jl

Author jieli-matrix
Popularity
18 Stars
Updated Last
1 Year Ago
Started In
July 2021

SparseADRules

Stable Dev Build Status Coverage

中文版本

SparseADRules is a part of the Summer 2021 of Open Source Promotion Plan. It implements the backward rules for sparse matrix operations on CPU using NiLang and ports these rules to ChainRules.

Background

Sparse matrices are extensively used in scientific computing, however there is no automatic differentiation package in Julia yet to handle sparse matrix operations. This project utilizes the reversible embedded domain-specific language NiLang.jl to differentiate sparse matrix operations by writing the sparse matrix operations in a reversible style. The generated backward rules are ported to ChainRules.jl as an extension, so that one can access these features in an automatic differentiation package like Zygote, Flux and Diffractor directly.

Install

To install, type ] in a julia (>=1.6) REPL and then input

pkg> add SparseADRules 

API References

Low-Level Operators

API description
function imul!(C::StridedVecOrMat, A::AbstractSparseMatrix{T}, B::DenseInputVecOrMat, α::Number, β::Number) where T sparse matrix to dense matrix multiplication
function imul!(C::StridedVecOrMat, xA::Adjoint{T, <:AbstractSparseMatrix}, B::DenseInputVecOrMat, α::Number, β::Number) where T adjoint sparse matrix to dense matrix multiplication
function imul!(C::StridedVecOrMat, X::DenseMatrixUnion, A::AbstractSparseMatrix{T}, α::Number, β::Number) where T dense matrix to sparse matrix multiplication
function imul!(C::StridedVecOrMat, X::Adjoint{T1, <:DenseMatrixUnion}, A::AbstractSparseMatrix{T2}, α::Number, β::Number) where {T1, T2} adjoint dense matrix to sparse matrix multiplication
function imul!(C::StridedVecOrMat, X::DenseMatrixUnion, xA::Adjoint{T, <:AbstractSparseMatrix}, α::Number, β::Number) where T dense matrix to sparse matrix multiplication
function idot(r, A::SparseMatrixCSC{T},B::SparseMatrixCSC{T}) where {T} dot operation between sparsematrix and sparsematrix
function idot(r, x::AbstractVector, A::AbstractSparseMatrix{T1}, y::AbstractVector{T2}) where {T1, T2} dot operation between sparsematrix and densevector
function idot(r, x::SparseVector, A::AbstractSparseMatrix{T1}, y::SparseVector{T2}) where {T1, T2} dot operation between sparsematrix and sparsevector

High-Level Operators

API description
low_rank_svd(A::AbstractSparseMatrix{T}, l::Int, niter::Int = 2, M::Union{AbstractMatrix{T}, Nothing} = nothing) where T Return the singular value decomposition of a sparse matrix A with estimated rank l such that A ≈ U diag(S) Vt. In case row vector M is given, then SVD is computed for the matrix A - M.

A Simple Use Case

Here we present a minimal use case to illustrate how to use SparseADRules to speed up Zygote's gradient computation. To access more examples, please navigate to the examples directory.

julia> using SparseArrays, LinearAlgebra, Random, BenchmarkTools

julia> A = sprand(1000, 1000, 0.1);

julia> x = rand(1000);

julia> using Zygote

julia> @btime Zygote.gradient((A, x) -> sum(A*x), $A, $x)
  15.065 ms (27 allocations: 8.42 MiB)

julia> using SparseADRules

julia> @btime Zygote.gradient((A, x) -> sum(A*x), $A, $x)
  644.035 μs (32 allocations: 3.86 MiB)

You will see that using SparseADRules would not only speed up the computation process but also save much memory since our implementation does not convert a sparse matrix to a dense arrays in gradient computation.

Contribute

Suggestions and Comments in the Issues are welcome.

License

MIT License

Used By Packages

No packages found.