Dependency Packages
-
AbstractFFTs.jl125A Julia framework for implementing FFTs
-
AbstractMCMC.jl79Abstract types and interfaces for Markov chain Monte Carlo methods
-
AbstractPPL.jl24Common types and interfaces for probabilistic programming
-
AbstractTrees.jl200Abstract julia interfaces for working with trees
-
Accessors.jl175Update immutable data
-
Adapt.jl89-
-
ADTypes.jl38Repository for automatic differentiation backend types
-
AdvancedHMC.jl228Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms
-
AdvancedMH.jl88Robust implementation for random-walk Metropolis-Hastings algorithms
-
AdvancedPS.jl56Implementation of advanced Sequential Monte Carlo and particle MCMC algorithms
-
AdvancedVI.jl78Implementation of variational Bayes inference algorithms
-
AliasTables.jl8An efficient sampler for discrete random variables
-
ArgCheck.jl101Package for checking function arguments
-
ArgTools.jl14Tools for writing functions that handle many kinds of IO arguments
-
ArnoldiMethod.jl96The Arnoldi Method with Krylov-Schur restart, natively in Julia.
-
ArrayInterface.jl133Designs for new Base array interface primitives, used widely through scientific machine learning (SciML) and other organizations
-
Atomix.jl20-
-
AxisAlgorithms.jl9Efficient filtering and linear algebra routines for multidimensional arrays
-
AxisArrays.jl200Performant arrays where each dimension can have a named axis with values
-
BangBang.jl13Immutables as mutables, mutables as immutables.
-
Baselet.jl19Base API optimized for tuples
-
BenchmarkTools.jl607A benchmarking framework for the Julia language
-
Bijections.jl44Bijection datatype for Julia.
-
Bijectors.jl200Implementation of normalising flows and constrained random variable transformations
-
BitFlags.jl16BitFlag.jl provides an Enum-like type for bit flag option values.
-
CEnum.jl12C-compatible enum for Julia
-
Chain.jl360A Julia package for piping a value through a series of transformation expressions using a more convenient syntax than Julia's native piping functionality.
-
ChainRules.jl435Forward and reverse mode automatic differentiation primitives for Julia Base + StdLibs
-
ChainRulesCore.jl253AD-backend agnostic system defining custom forward and reverse mode rules. This is the light weight core to allow you to define rules for your functions in your packages, without depending on any particular AD system.
-
ChangesOfVariables.jl11Interface for transformation functions in Julia
-
CodecBzip2.jl8A bzip2 codec for TranscodingStreams.jl.
-
CodecZlib.jl50Zlib codecs for TranscodingStreams.jl.
-
Colors.jl204Color manipulation utilities for Julia
-
ColorSchemes.jl187Colorschemes, colormaps, gradients, and palettes
-
ColorTypes.jl78Basic color definitions and traits
-
ColorVectorSpace.jl35Treat colors as if they are n-vectors for the purposes of arithmetic
-
Combinatorics.jl214A combinatorics library for Julia
-
CommonSolve.jl19A common solve function for scientific machine learning (SciML) and beyond
-
CommonSubexpressions.jl37Naïve combined subexpression elimination in Julia
-
CommonWorldInvalidations.jl9Fixing the world one invalidator at a time.
Loading more...