Dependency Packages
-
CategoricalTimeSeries.jl6Toolbox for categorical time-series analysis.
-
FullNetworkSystems.jl6Definitions of the Julia types for simulating an ISO's market clearing.
-
AlphaStableDistributions.jl6Alpha stable and sub-Gaussian distributions in Julia
-
GeneticBitArrays.jl6BitArray representation of genetic sequences in Julia
-
Fronts.jl6Nonlinear diffusion problems in Julia
-
ConstraintModels.jl6A package that stores Constraint Programming models for JuliaConstraints solvers
-
CoinbaseProExchange.jl6Julia wrapper for the Coinbase Pro API
-
CancerSeqSim.jl6-
-
GslibIO.jl6Utilities to read/write extended GSLIB files in Julia
-
PetscCall.jl6Use PETSc solvers in sequential and parallel Julia runs
-
GumbelSoftmax.jl6Julia implementation of the Gumbel-Softmax reparametrization trick compatible with Zygote and ForwardDiff
-
CalibrationTests.jl6Hypothesis tests of calibration.
-
AdaStress.jl6Reinforcement learning framework to find and analyze the likeliest failures of a system under test.
-
NetDecOPF.jl6A Julia package for network decomposition of optimal power flow problems
-
LinearFractional.jl6Linear fractional programming with Julia and JuMP
-
LinearMixingModels.jl6Http://proceedings.mlr.press/v119/bruinsma20a.html
-
Mango.jl6Modular Julia-based agent framework to implement multi-agent systems
-
CumulantsFeatures.jl6Cumulants based features selection and outlier detection
-
MRFingerprintingRecon.jl6-
-
HarmonicPowerModels.jl6An extension package of PowerModels.jl for Harmonic (Optimal) Power Network
-
NativeSARSOP.jl6-
-
ClimaDiagnostics.jl6A framework to define and output observables and statistics from CliMA simulations
-
MessyTimeSeriesOptim.jl6A Julia implementation of estimation and validation algorithms for time series compatible with incomplete data.
-
HeartRateVariability.jl6-
-
MPIReco.jl6Julia package for MPI reconstruction
-
GlobalApproximationValueIteration.jl6-
-
PhaseSpaceTools.jl6Sampling quantum phase space distributions
-
BridgeDiffEq.jl6A thin wrapper over Bridge.jl for the SciML scientific machine learning common interface, enabling new methods for neural stochastic differential equations (neural SDEs)
-
BrazilFinancialData.jl6-
-
AnalyticComb.jl6Solutions for combinatorial problems using symbolic methods.
-
DroneSurveillance.jl6Implementation of a drone surveillance problem with POMDPs.jl
-
Foresight.jl6A Makie theme
-
DrawSimpleGraphs.jl6Drawing functions for `SimpleGraphs`
-
PhyloDiamond.jl6Method to estimate phylogenetic networks from algebraic invariants
-
NCBITaxonomy.jl6Wrapper around the NCBI taxonomy files
-
Knockoffs.jl6Variable Selection with Knockoffs
-
PowerSpectra.jl6Power spectra on the masked sky
-
Dagitty.jl6Graphical Analysis of Structural Causal Models
-
ERA5Reanalysis.jl6Dealing with ERA5 Reanalysis datasets
-
FMISensitivity.jl6Unfortunately, FMUs (fmi-standard.org) are not differentiable by design. To enable their full potential inside Julia, FMISensitivity.jl makes FMUs fully differentiable, regarding to: states and derivatives | inputs, outputs and other observable variables | parameters | event indicators | explicit time | state change sensitivity by event
Loading more...