PandasJSON.jl
A Julia package for reading and writing Pandas dataframes in JSON format.
Install
pkg> add PandasJSON
Tutorial
First we load relevant packages. In this tutorial we use DataFrames.jl for our tabular data, but any Tables.jl-compatible data structure will do.
julia> using PandasJSON, DataFrames
Now we create a table with two columns and some missing data.
julia> df = DataFrame(x=[1,2,3], y=[true,false,missing])
3×2 DataFrame
Row │ x y
│ Int64 Bool?
─────┼────────────────
1 │ 1 true
2 │ 2 false
3 │ 3 missing
Now let's save this to disk in JSON format and take a look at the resulting file.
julia> PandasJSON.write("example.json", df)
julia> println(read("example.json", String))
{"y":{"1":false,"0":true,"2":null},"x":{"1":2,"0":1,"2":3}}
Finally we read the JSON file back as a table and convert it to a DataFrame. We could do the same thing with a JSON file written in Python by Pandas.
julia> df = PandasJSON.read("example.json", DataFrame)
3×2 DataFrame
Row │ x y
│ Int64 Bool?
─────┼────────────────
1 │ 1 true
2 │ 2 false
3 │ 3 missing
Note: These functions have an optional orient
keyword argument, which controls
how the tabular data is represented as a JSON structure. The default in both Pandas and
PandasJSON is orient="split"
, so with default parameters everything should be compatible.
You should use this argument if either:
- You are reading data which set the
orient
to something non-default. - You would like to guarantee row and column ordering is correct (
split
,table
orvalues
) or require more column type information to be stored (table
).
If you are not sure, you can use guess_orient
:
julia> PandasJSON.write("example.json", df, orient="table")
julia> PandasJSON.guess_orient("example.json")
1-element Vector{Symbol}:
"table"
julia> df = PandasJSON.read("example.json", DataFrame, orient="table")
3×2 DataFrame
Row │ x y
│ Int64 Bool?
─────┼────────────────
1 │ 1 true
2 │ 2 false
3 │ 3 missing
API
Read the docstrings for more details and keyword arguments.
PandasJSON.read(file, [type])
: Read a JSON file as a table.PandasJSON.write(file, table)
: Write a table to the file in JSON format.PandasJSON.guess_orient(file)
: Guess theorient
parameter used to write the given file.
Note that PandasJSON.read
should behave identically to
pandas.read_json
and PandasJSON.write
should behave identically to
pandas.DataFrame.to_json
,
including the behaviour of any supported keyword arguments. Any deviation is considered a
bug.
Related packages
There are many other Julia packages for reading and writing tabular data in formats supported by Pandas. We recommend using one of these instead if possible.
Format | Packages |
---|---|
Feather | Feather |
Parquet | Parquet, Parquet2 |
Stata DTA, SAS, SPSS | ReadStat |
Excel | XLSX, ExcelReaders |
CSV | CSV, DelimitedFiles |
FWF | CSV |