252 Stars
Updated Last
1 Year Ago
Started In
October 2013


Julia interface for the OpenCL parallel computation API

This package aims to be a complete solution for OpenCL programming in Julia, similar in scope to PyOpenCL for Python. It provides a high level API for OpenCL to make programing hardware accelerators, such as GPUs, FPGAs, and DSPs, as well as multicore CPUs much less onerous.

OpenCL.jl provides access to OpenCL API versions 1.0, 1.1, 1.2 and 2.0.


  1. Install an OpenCL driver. (If you're on macOS, OpenCL is either already available or unsupported.)
  2. Add OpenCL to your Julia environment:
using Pkg

Basic example: vector add

Note: We use cl.create_compute_context() here which only considers GPUs and CPUs.

using LinearAlgebra
using OpenCL

const sum_kernel = "
   __kernel void sum(__global const float *a,
                     __global const float *b,
                     __global float *c)
      int gid = get_global_id(0);
      c[gid] = a[gid] + b[gid];
a = rand(Float32, 50_000)
b = rand(Float32, 50_000)

device, ctx, queue = cl.create_compute_context()

a_buff = cl.Buffer(Float32, ctx, (:r, :copy), hostbuf=a)
b_buff = cl.Buffer(Float32, ctx, (:r, :copy), hostbuf=b)
c_buff = cl.Buffer(Float32, ctx, :w, length(a))

p = cl.Program(ctx, source=sum_kernel) |> cl.build!
k = cl.Kernel(p, "sum")

queue(k, size(a), nothing, a_buff, b_buff, c_buff)

r = cl.read(queue, c_buff)

if isapprox(norm(r - (a+b)), zero(Float32))
    @info "Success!"
    @error "Norm should be 0.0f"

More examples

You may want to check out the examples folder. Either git clone the repository to your local machine or navigate to the OpenCL.jl install directory via

using OpenCL
cd(joinpath(dirname(pathof(OpenCL)), ".."))

Otherwise, feel free to take a look at the Jupyter notebooks below


This package is heavily influenced by the work of others:

Documentation: API

Here's a rough translation between the OpenCL API in C to this Julia version. Optional arguments are indicated by [name?] (see clCreateBuffer, for example). For a quick reference to the C version, see the Khronos quick reference card.

Platform and Devices

C Julia Notes
clGetPlatformIDs cl.platforms()
clGetPlatformInfo cl.info(platform, :symbol) Platform info: :profile, :version, :name, :vendor, :extensions
clGetDeviceIDs cl.devices(), cl.devices(platform), cl.devices(:type) Device types: :all, :cpu, :gpu, :accelerator, :custom, :default
clGetDeviceInfo cl.info(device, :symbol) Device info: :driver_version, :version, :profile, :extensions, :platform, :name, :device_type, :has_image_support, :queue_properties, :has_queue_out_of_order_exec, :has_queue_profiling, :has_native_kernel, :vendor_id, :max_compute_units, :max_work_item_size, :max_clock_frequency, :address_bits, :max_read_image_args, :max_write_image_args, :global_mem_size, :max_mem_alloc_size, :max_const_buffer_size, :local_mem_size, :has_local_mem, :host_unified_memory, :available, :compiler_available, :max_work_group_size, :max_work_item_dims, :max_parameter_size, :profiling_timer_resolution, :max_image2d_shape, :max_image3d_shape
clCreateContext cl.context(queue), cl.context(CLMemObject), cl.context(CLArray)`
clReleaeContext cl.release!


C Julia Notes
clCreateBuffer cl.Buffer(type, context, [length?]; [hostbuf?]), cl.Buffer(type, context, flags, [length?]; [hostbuf?]) Memory flags: :rw, :r, :w, :use, :alloc, :copy
clEnqueueCopyBuffer cl.copy!(queue, destination, source)
clEnqueueFillBuffer cl.enqueue_fill_buffer(queue, buffer, pattern, offset, nbytesm wait_for)
clEnqueueReadBuffer cl.enqueue_read_buffer(queue, buffer, hostbuf, dev_offset, wait_for, is_blocking)
clEnqueueWriteBuffer cl.enqueue_write_buffer(queue, buffer, hostbuf, byte_count, offset, wait_for, is_blocking)

Program Objects

C Julia Notes
clCreateProgramWithSource cl.Program(ctx; source)
clCreateProgramWithBinaries cl.Program(ctx; binaries)
clReleaseProgram cl.release!
clBuildProgram cl.build!(progrm, options)
clGetProgramInfo cl.info(program, :symbol) Program info: :reference_count, :devices, :context, :num_devices, :source, :binaries, :build_log, :build_status

Kernel and Event Objects

C Julia Notes
clCreateKernel cl.Kernel(program, "kernel_name")
clGetKernelInfo cl.info(kernel, :symbol) Kernel info: :name, :num_args, :reference_count, :program, :attributes
clEnqueueNDRangeKernel cl.enqueue_kernel(queue, kernel, global_work_size), cl.enqueue_kernel(queue, kernel, global_work_size, local_work_size; global_work_offset, wait_on)
clSetKernelArg cl.set_arg!(kernel, idx, arg) idx starts at 1
clCreateUserEvent cl.UserEvent(ctx; retain)
clGetEventInfo cl.info(event, :symbol) Event info: :context, :command_queue, :reference_count, :command_type, :status, :profile_start, :profile_end, :profile_queued, :profile_submit, :profile_duration
clWaitForEvents cl.wait(event), cl.wait(events)
clEnqueueMarkerWithWaitList cl.enqueue_marker_with_wait_list(queue, wait_for)
clEnqueueBarrierWithWaitList cl.enqueue_barrier_with_wait_list(queue, wait_for)

Required Packages

No packages found.