DEPRECATED: I'm giving up with Julia and I'll implement similar algorithms in another language. If you want to develop further, please fork this repository.
Why I gave up with Julia:
- Lack of OOP
 - Lack of static type checking: most errors were encountered in runtime
 - Unreadable library source codes (due to lack of OOP and type system)
 - ...
 
Numerical algorithms implemented in Julia.
Install the package with add https://github.com/mrtkp9993/NumericalAlgorithms.jl in package mode (]).
Currently implemented:
- Root finding algorithms
- Secant method
 - Broyden's method
 
 - Differentation
- Automatic differentiation via dual numbers
 
 - Integration
- Composite Simpson - One dim.
 - Double Simpson - Two dim.
 - Monte Carlo Integration - Arbitrary dimension
 
 - Random Number Generators (RNGs)
- Pseudo-random numbers
- Lagged Fibonacci generator
 - RANMAR
 
 - Quasi-random numbers
- van der Corput sequences
 - Halton sequences
 - Faure sequences
 - Sobol sequences
 
 
 - Pseudo-random numbers
 - Markov Chain Monte Carlo (MCMC) for sampling
 - Statistical Tests
- Wald–Wolfowitz runs test
 
 
Distributed under the GPL License. See LICENSE for more information.
Murat Koptur, LinkedIn
Email: muratkoptur@yandex.com
- Press, William H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical Recipes 3rd Edition: The Art of Scientific Computing (3rd ed.). Cambridge, England: Cambridge University Press.
 - Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for Optimization (The MIT Press) (Illustrated ed.). The MIT Press.
 - Burden, R. L., & Faires, D. J. (2010). Numerical Analysis (9th ed.). Cengage Learning.
 - Zwillinger, D. (2018). CRC Standard Mathematical Tables and Formulas, 33rd Edition. Amsterdam University Press.
 - Stoop, R., Hardy, A., Hardy, Y., & Steeb, W. (2004). Problems and Solutions in Scientific Computing with C++ and Java Simulations. World Scientific Publishing Company.
 - Weinzierl, S. (2000, June 23). Introduction to Monte Carlo methods. ArXiv.Org. https://arxiv.org/abs/hep-ph/0006269.
 - Lists of small primes. (2020). The PrimePages: Prime Number Research & Records. https://primes.utm.edu/lists/small/.