Error-free transformations are used to get results with extra accuracy.
- The number that begins a function name always matches the number of values returned.
- the values returned are of descending magnitude and non-overlapping when added.
- The number that begins a function name often matches the number of arguments expected.
two_invandtwo_sqrtare single argument functions returning two values
These are error-free transformations.
two_sum,two_diff,two_prodtwo_square,two_cubethree_sum,three_diff,three_prodtwo_fma,three_fmafour_sum,four_diff
These are error-free transformations with magnitude sorted arguments.
two_hilo_sum,two_lohi_sumtwo_hilo_diff,two_lohi_diffthree_hilo_sum,three_lohi_sumthree_hilo_diff,three_lohi_difffour_hilo_sum,four_lohi_sumfour_hilo_diff,four_lohi_diff
These are least-error transformations, as close to error-free as possible.
two_inv,two_sqrttwo_div
The routines named with the prefix two_ return a two-tuple holding (high_order_part, low_order_part).
Those named with the prefix three_ return a three-tuple holding (high_part, mid_part, low_part).
Error-free transformations return a tuple of the nominal result and the residual from the result (the left-over part).
Error-free addition sums two floating point values (a, b) and returns two floating point values (hi, lo) such that:
(+)(a, b) == hi|hi| > |lo|and(+)(hi, lo) == hiabs(hi) and abs(lo) do not share significant bits
Here is how it is done:
function add_errorfree(a::T, b::T) where T<:Union{Float64, Float32}
a_plus_b_hipart = a + b
b_asthe_summand = a_plus_b_hipart - a
a_plus_b_lopart = (a - (a_plus_b_hipart - b_asthe_summand)) + (b - b_asthe_summand)
return a_plus_b_hipart, a_plus_b_lopart
end
a = Float32(1/golden^2) # 0.3819_6602f0
b = Float32(pi^3) # 31.0062_7700f0
a_plus_b = a + b # 31.3882_4300f0
hi, lo = add_errorfree(a,b) # (31.3882_4300f0, 3.8743_0270f-7)
a_plus_b == hi # true
abs(hi) > abs(lo) && hi + lo == hi # true
The lo part is a portion of the accurate value, it is (most of) the residuum that the hi part could not represent.
The hi part runs out of significant bits before the all of the accurate value is represented. We can see this:
a = Float32(1/golden^2) # 0.3819_6602f0
b = Float32(pi^3) # 31.0062_7700f0
hi, lo = add_errorfree(a,b) # (31.3882_4300f0, 3.8743_0270f-7)
a_plus_b_accurate = BigFloat(a) + BigFloat(b)
lo_accurate = Float32(a_plus_b_accurate - hi)
lo == lo_accurate # trueThis package is intended to be used in the support of other work.
All routines expect Float64 or Float32 or Float16 values.
[LO2020] Marko Lange and Shin'ichi Oishi A note on Dekker’s FastTwoSum algorithm Numerische Mathematik (2020) 145:383–403 https://doi.org/10.1007/s00211-020-01114-2
[BGM2017] Sylvie Boldo, Stef Graillat, and Jean-Michel Muller On the robustness of the 2Sum and Fast2Sum algorithms ACM Transactions on Mathematical Software, Association for Computing Machinery, 2017 https://hal.inria.fr/ensl-01310023
[GMM2007] Stef Graillat, Valérie Ménissier-Morain Error-Free Transformations in Real and Complex Floating Point Arithmetic International Symposium on Nonlinear Theory and its Applications (NOLTA'07), Sep 2007, Vancouver, Canada. Proceedings of International Symposium on Nonlinear Theory and its Applications (NOLTA'07), pp.341-344. https://hal.archives-ouvertes.fr/hal-01306229
[ORO2006] Takeshi Ogita, Siegfried M. Rump, and Shin'ichi Oishi Accurate Sum and Dot Product SIAM J. Sci. Comput., 26(6), 1955–1988. Published online: 25 July 2006 DOI: 10.1137/030601818
[D1971] T.J. Dekker A floating-point technique for extending the available precision. Numer. Math. 18, 224–242 (1971). https://doi.org/10.1007/BF01397083