AI Packages
-
SimpleChains.jl234Simple chains
-
TensorFlow.jl884A Julia wrapper for TensorFlow
-
NMF.jl91A Julia package for non-negative matrix factorization
-
Tracker.jl51Flux's ex AD
-
JuliaParser.jl91A rewrite of Julia's parser in Julia
-
ConformalPrediction.jl135Predictive Uncertainty Quantification through Conformal Prediction for Machine Learning models trained in MLJ.
-
MelGeneralizedCepstrums.jl20Mel-Generalized Cepstrum analysis
-
ScikitLearn.jl546Julia implementation of the scikit-learn API https://cstjean.github.io/ScikitLearn.jl/dev/
-
Wandb.jl82Unofficial Julia bindings for logging experiments to wandb.ai
-
MLJModels.jl80Home of the MLJ model registry and tools for model queries and mode code loading
-
ReinforcementLearning.jl583A reinforcement learning package for Julia
-
MCTS.jl73Monte Carlo Tree Search for Markov decision processes using the POMDPs.jl framework
-
ReactiveMP.jl99High-performance reactive message-passing based Bayesian inference engine
-
Clustering.jl353A Julia package for data clustering
-
CombineML.jl42Create ensembles of machine learning models from scikit-learn, caret, and julia
-
MLDatasets.jl227Utility package for accessing common Machine Learning datasets in Julia
-
ShapML.jl82A Julia package for interpretable machine learning with stochastic Shapley values
-
MLUtils.jl107Utilities and abstractions for Machine Learning tasks
-
MLJTuning.jl67Hyperparameter optimization algorithms for use in the MLJ machine learning framework
-
TSVD.jl40Truncated singular value decomposition with partial reorthogonalization
-
ReservoirComputing.jl206Reservoir computing utilities for scientific machine learning (SciML)
-
ParticleFilters.jl45Simple particle filter implementation in Julia - works with POMDPs.jl models or others.
-
BetaML.jl92Beta Machine Learning Toolkit
-
OpenAI.jl91OpenAI API wrapper for Julia
-
Torch.jl211Sensible extensions for exposing torch in Julia.
-
Languages.jl55A package for working with human languages
-
ObjectDetector.jl90Pure Julia implementations of single-pass object detection neural networks.
-
BayesianOptimization.jl91Bayesian optimization for Julia
-
MIPVerify.jl113Evaluating Robustness of Neural Networks with Mixed Integer Programming
-
TSML.jl112A package for time series data processing, classification, clustering, and prediction.
-
ApproxBayes.jl52Approximate Bayesian Computation (ABC) algorithms for likelihood free inference in julia
-
Mill.jl86Build flexible hierarchical multi-instance learning models.
-
FeatureSelection.jl1Repository housing feature selection algorithms for use with the machine learning toolbox MLJ.
-
Reinforce.jl201Abstractions, algorithms, and utilities for reinforcement learning in Julia
-
InvertibleNetworks.jl149A Julia framework for invertible neural networks
-
AugmentedGaussianProcesses.jl135Gaussian Process package based on data augmentation, sparsity and natural gradients
-
CartesianGeneticProgramming.jl70Cartesian Genetic Programming for Julia
-
RegERMs.jl16DEPRECATED: Regularised Empirical Risk Minimisation Framework (SVMs, LogReg, Linear Regression) in Julia
-
MLJModelInterface.jl37Lightweight package to interface with MLJ
-
ONNXNaiveNASflux.jl43Import/export ONNX models
Loading more...